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Abstract

In this project we are studying the sparsest cut
problem in graphs and its application.
We study:

•Formulation of the problem and it various
generalization.

•Spectral algorithms and their applications in
data clustering

•An efficient algorithms on weighted trees
•An implementation of the above algorithm in
parallel using CUDA platform

•Experimental results on various data sets

Introduction

•The edge expansion ("sparsity" or "Cheeger
constant") of a graph G is:

φ(G) := E(S,S̄)
min(|S|,|S̄|)

The Sparsest Cut problem asks to find a cut
E(S, S̄) with smallest possible sparsity.

•For a subset of vertices A in a graph G, the
normalized flow of A is:

E(S,S̄)
|S|

The mean version of the problem seeks for a cut
which minimize the average normalized flows of
the sets S and S̄.

Figure 1: Sparsest Cut Solution

Problem Generalization

•k-Normalized Cut Problem:
Given a weighted graph G = (V,E, ϕ, ω) and an
integer k. Find a k-partition of vertices G such
that the sum (maximum) of their normalized
flows is minimized.

Figure 2: 3-Normalized Cut Solution

•k-Isopertimetric Problem:
The isoperimetric problem aims to minimize the
normalized cut objective function over the space
of subpartitions.

Figure 3: 3-Isoperimetric Solution

Spectral Algorithm

• In [3], Ng et al. proposed the following
approximation algorithm for k-Normalized cut
problem:
1 Compute the first k eigenvectors u1, ..., uk of Laplacian
matrix.

2 Let U ∈ Rn∗k be the matrix containing the vectors
u1, ..., uk as columns.

3 For i = 1, ..., n, let yi ∈ Rk be the vector corresponding
to the i-th row of U.

4 Cluster the points (yi)i=1,...,n in Rk with the k-means
algorithm into clusters C1, ..., Ck.

Figure 4: Spectral Projection of Data in the Algorithm

•The approximation factor of this algorithm can be
bounded by higher order Cheeger’s inequalities.

•The algorithm can be used as an alternative
algorithm for data clustering tasks.

Relation to Laplacian Spectrum

Let 0 = λ1 ≤ λ2 ≤ ... ≤ λ|V | be the Laplacian
eigenvalues of a graph G.

• Cheeger’s inequality offers the following
quantitative connection betwen φ(G) and λ2:

λ2
2 ≤ φ(G) ≤

√
2λ2

• In [2], Lee et al. show the following relation for
k-normalized cut problem:

λk
2 ≤ φk(G) ≤ O(k2)

√
λk

• In [4], Shi and Malik, use the second Laplacian
eigenvector to approximate the mean normalized
cut problem.

Algorithms on Trees

In [1], Daneshgar et al. show that the maximum
k-Isoperimetric problem for weighted trees can be
solved and an affirmative subpartition can be found
(if exists) in time O(n log n) and proposed a cluster-
ing algorithm as follows:

1 Construct similarity graph G,
2 Compute minimum spanning tree of G,
3 Solve the k-Isoperimetric problem using the
algorithm in [1].

Figure 5: Experimental Results of Algorithm [1]

Parallel Implementation and
Experimental Results

•We implement the first two steps of the above
algorithm in parallel,

•The implementation is done using CUDA
platform on Nvidia Geforce GTX 850M card.

•The sketch of the algorithm is:
1 Find all matrix elements independently in parallel,
2 Find the minimum spanning tree in parallel using
algorithm in [5],

3 Solve the k-Isoperimetric problem using algorithm in [1].

Figure 6: Experimental Results
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